Pseudoparticle solutions to the Yang-Mills equation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1986 J. Phys. A: Math. Gen. 193693
(http://iopscience.iop.org/0305-4470/19/17/031)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 10:06

Please note that terms and conditions apply.

COMMENT

Pseudoparticle solutions to the Yang-Mills equation

Mrityunjoy De, Swapan Konar and Dipankar Ray
Department of Mathematics, Jadavpur University, Calcutta-700032, India

Received 5 February 1986

Abstract

In a recent paper Ma and Xu have obtained a set of equations for the embedding $\mathrm{SO}(4)$ pseudoparticle with vanishing energy-momentum tensor in $\operatorname{SU}(N)$ Yang-Mills theory and have obtained one particular solution. We completely solve these equations here.

In a recent paper Ma and Xu (1984) have obtained the following equations for SO (4) pseudoparticle solutions with vanishing energy-momentum tensor in $\operatorname{SU}(N)$ YangMills theory:

$$
\begin{align*}
& u\left(2 \ddot{\phi}_{1}-e^{2} \phi_{1}^{3}-3 e^{2} \phi_{1} \phi_{2}^{2}\right)+3\left(2 \dot{\phi}_{1}+e \phi_{1}^{2}+e \phi_{2}^{2}\right)=0 \tag{1a}\\
& u\left(2 \ddot{\phi}_{2}-e^{2} \phi_{2}^{3}-3 e^{2} \phi_{1}^{2} \phi_{2}\right)+6\left(\dot{\phi}_{2}+e \phi_{1} \phi_{2}\right)=0 . \tag{1b}
\end{align*}
$$

The gauge field strength $G_{\mu \nu}$ is given by

$$
\begin{aligned}
G_{\mu \nu}=\partial_{\mu} W_{\nu}- & \partial_{\nu} W_{\mu}-i e\left[W_{\mu}, W_{\nu}\right] \\
= & {\left[-2 \phi_{1}+e u\left(\phi_{1}^{2}+\phi_{2}^{2}\right)\right] I_{\mu \nu}-\phi_{2} \varepsilon_{\mu \nu \rho \lambda} I_{\rho \lambda} } \\
& +\left[2 \dot{\phi}_{1}+e\left(\phi_{1}^{2}+\phi_{2}^{2}\right)\right]\left(x_{\mu} I_{\nu \rho}-x_{\nu} I_{\mu \rho}\right) x_{\rho} \\
& +\left[\dot{\phi}_{2}\left(x_{\mu} \varepsilon_{\nu \sigma \rho \lambda}-x_{\nu} \varepsilon_{\mu \sigma \rho \lambda}\right) I_{\sigma \rho} x_{\lambda}\right]-2 e \phi_{1} \phi_{2} \varepsilon_{\mu \nu \sigma \lambda} x_{\rho} I_{\rho \sigma} x_{\lambda}
\end{aligned}
$$

where $I_{\mu \nu}$ are the generators of $\mathscr{D}(R)$ and $\mathscr{D}(R)$ is an N-dimensional representation of the $\mathrm{SO}(4)$ group and where the synchrospherically symmetric gauge potential composed of $I_{\mu \nu}$ and x_{μ} is given by

$$
W_{\mu}(x)=\phi_{1}(u) I_{\mu \nu} x_{\nu}+\phi_{2}(u) \frac{1}{2} \varepsilon_{\mu \nu \rho \lambda} I_{\nu \rho} x_{\lambda} \quad u \equiv x^{2}
$$

and a dot indicates the derivative with respect to $u \equiv x^{2}$.
Ma and Xu obtained the following particular solutions of (1a) and (1b):

$$
\begin{align*}
& \phi_{1}=\frac{1}{e}\left(\frac{1}{u+a^{2}}+\frac{1}{u+b^{2}}\right) \tag{2a}\\
& \phi_{2}=\frac{1}{e}\left(\frac{1}{u+a^{2}}-\frac{1}{u+b^{2}}\right) \tag{2b}
\end{align*}
$$

where integration constants a^{2} and b^{2} are chosen greater than 0 so that ϕ_{1} and ϕ_{2}, and hence W_{μ}, are regular for all X. In the present comment we obtain general solutions of equations (1) as follows.

The set of equations (1) is equivalent to

$$
\begin{align*}
& 2 u\left(\ddot{\phi}_{1}+\ddot{\phi}_{2}\right)+6\left(\dot{\phi}_{1}+\dot{\phi}_{2}\right)+3 e\left(\phi_{1}+\phi_{2}\right)^{2}-e^{2} u\left(\phi_{1}+\phi_{2}\right)^{3}=0 \tag{3a}\\
& 2 u\left(\ddot{\phi}_{1}-\ddot{\phi}_{2}\right)+6\left(\dot{\phi}_{1}-\dot{\phi}_{2}\right)+3 e\left(\phi_{1}-\phi_{2}\right)^{2}-e^{2} u\left(\phi_{1}-\phi_{2}\right)^{3}=0 . \tag{3b}
\end{align*}
$$

The above two equations are respectively equivalent to

$$
\begin{align*}
& 2 V_{v v}-2 V+3 e V^{2}-e^{2} V^{3}=0 \tag{4a}\\
& 2 S_{v v}-2 S+3 e S^{2}-e^{2} S^{3}=0 \tag{4b}
\end{align*}
$$

where

$$
\begin{align*}
& V=u\left(\phi_{1}+\phi_{2}\right) \\
& S=u\left(\phi_{1}-\phi_{2}\right) \tag{5}
\end{align*}
$$

and

$$
v=\ln u .
$$

Integration of (4a) and (4b) gives

$$
\begin{equation*}
\ln u= \pm 2 \int \frac{\mathrm{~d} V}{\left(e^{2} V^{4}-4 e V^{3}+4 V^{2}+4 n_{1}\right)^{1 / 2}}+n_{1}^{\prime} \tag{6a}
\end{equation*}
$$

and

$$
\begin{equation*}
\ln u= \pm 2 \int \frac{\mathrm{~d} S}{\left(e^{2} S^{4}-4 e S^{3}+4 S^{2}+4 n_{2}\right)^{1 / 2}}+n_{2}^{\prime} \tag{6b}
\end{equation*}
$$

where

$$
\begin{equation*}
\phi_{1}=(V+S) / 2 u \tag{6c}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi_{2}=(V-S) / 2 u . \tag{6d}
\end{equation*}
$$

For $e=0$ the integration is trivial and for $e \neq 0$ these equations reduce to

$$
\begin{equation*}
\ln u= \pm \int \frac{\mathrm{d} Y}{\left\{Y\left[(Y-1)^{2}+4 n_{1} e^{2}\right]\right\}^{1 / 2}}+n_{1}^{\prime} \tag{7a}
\end{equation*}
$$

and

$$
\begin{equation*}
\ln u= \pm \int \frac{\mathrm{d} Z}{\left\{Z\left[(Z-1)^{2}+4 n_{2} e^{2}\right]\right\}^{1 / 2}}+n_{2}^{\prime} \tag{7b}
\end{equation*}
$$

where

$$
\begin{aligned}
& Y=\left[e u\left(\phi_{1}+\phi_{2}\right)-1\right]^{2} \\
& Z=\left[e u\left(\phi_{1}-\phi_{2}\right)-1\right]^{2} .
\end{aligned}
$$

In conclusion, therefore, the general solution of equations (1) for $e \neq 0$ is given implicitly by equations (7). For $n_{1}=0$ equation ($7 a$) can be explicitly integrated to give

$$
\begin{equation*}
\ln u= \pm \ln \frac{e u\left(\phi_{1}+\phi_{2}\right)-2}{e u\left(\phi_{1}+\phi_{2}\right)}+n_{1}^{\prime} . \tag{8a}
\end{equation*}
$$

Similarly for $n_{2}=0$, equation ($7 b$) can be explicitly integrated to give

$$
\begin{equation*}
\ln u= \pm \ln \frac{e u\left(\phi_{1}-\phi_{2}\right)-2}{e u\left(\phi_{1}-\phi_{2}\right)}+n_{2}^{\prime} . \tag{8b}
\end{equation*}
$$

If we consider the negative sign of ($8 a$) and ($8 b$) and put the integration constants $n_{1}^{\prime}=\ln \left(-a^{2}\right)$ and $n_{2}^{\prime}=\ln \left(-b^{2}\right)$, then equations ($8 a$) and ($8 b$) reduce to the particular solution (2a) of equations (1) that have already been obtained by Ma and Xu (1984).

If we consider the positive sign of equations ($8 a$) and ($8 b$) and set $n_{1}^{\prime}=\ln \left(-1 / a^{2}\right)$, $n_{2}^{\prime}=\ln \left(-1 / b^{2}\right)$ then we obtain

$$
\begin{aligned}
\phi_{1} & =\frac{1}{e}\left(\frac{1}{u\left(1+a^{2} u\right)}+\frac{1}{u\left(1+b^{2} u\right)}\right) \\
\phi_{2} & =\frac{1}{e}\left(\frac{1}{u\left(1+a^{2} u\right)}-\frac{1}{u\left(1+b^{2} u\right)}\right) .
\end{aligned}
$$

For $n_{1} \neq 0$ and $n_{2} \neq 0$, the expressions ($7 a$) and ($7 b$) are in the form of an elliptical integral. These can be integrated numerically by using tables for standard elliptic integrals.

Reference

Ma Z-Q and Xu B-w 1984 J. Phys. A: Math. Gen. 17 L389-93

